STRUCTURE AND STEREOCHEMISTRY OF PSEUDOLAROLIDE-H, A NOVEL PEROXY TRITERPENE DILACTONE FROM PSEUDOLARIX KAEMPFERI

Guo-Fu Chen,^a Zhu-Lian Li,^{*a} Ke Chen,^b Cheng-Min Tang,^c Xiang He,^c De-Ji Pan,^a Donald R. McPhail,^d Andrew T. McPhail,^{*d} and Kuo-Hsiung Lee^{*b}

^aDepartment of Chemistry of Natural Drugs, School of Pharmacy, Shanghai Medical University, Shanghai 200032, People's Republic of China, ^bNatural Products Laboratory, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, U.S.A., ^cShanghai Institute of Materia Medica, Academia Sinica, Shanghai 200032, People's Republic of China, and ^dDepartment of Chemistry, P. M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706, U.S.A.

Summary: A novel peroxy triterpene dilactone, pseudolarolide-H, has been isolated from the seeds of *Pseudolarix kaempferi*, and its structure and stereochemistry have been established from spectral data and single-crystal X-ray analysis.

"Tu-Jin-Pi", the root bark of *P. kaempferi* (Pinaceae), has been used as a folk medicine in China for the treatment of skin diseases caused by fungi. Discovery of a variety of structurally novel di- and tri-terpenes, including potent cytotoxic pseudolaric acid-A and -B,^{1,2} prompted our continuing search for further novel cytotoxic antitumor compounds from other parts of this same plant. The ethereal extract of the seeds of *P. kaempferi* yielded the novel triterpene dilactone pseudolarolide-E(1).³ We report herein on the isolation and structural characterization of pseudolarolide-H (2), a novel peroxy triterpene dilactone from this same extract.

Pseudolarolide-H (2) was isolated in 0.0044% yield from the active ethereal extract of the seeds of *P. kaempferi* by silica gel chromatography. Compound 2 $[C_{30}H_{42}O_7;$ calc. (M⁺) m/z 514.2930, found 514.2949] crystallized as colorless prisms, m.p. 218-221 °C (acetone). Its i.r. $[v_{max}$ (KBr) cm⁻¹] spectrum revealed the presence of a γ lactone (1170), an α,β -unsaturated lactone (1692), and a double bond (1642). The ¹H n.m.r. spectrum (400MHz, CDCl₃) of 2 contained signals for two mutually coupled olefinic protons [δ 6.02, 1H, d, J = 12.5 Hz (H-1); δ 5.92, 1H, d, J = 12.5 Hz (H-2)] and six methyl groups of which two were bonded to quaternary oxygen-bearing carbon atoms (δ 1.41, 3H, s; δ 1.37, 3H, s), two were attached to quaternary carbon atoms (δ 0.84, 3H, s; δ 1.15, 3H, s), and two were located at tertiary carbon centers (δ 1.23, 3H, d, J = 7.2 Hz; δ 0.88, 3H, d, J = 6.6 Hz). This evidence, coupled with the lack of any cyclopropyl group signals, suggested that 2 was a triterpene possessing a 9,10-secocycloartane skeleton wherein ring A had suffered an oxidative cleavage between C(3) and C(4) to form a seven-membered lactone ring similar to that in 1, which was isolated previously from this same extract. The mass spectrum of 2 revealed a fragment at m/z 482.3045 ($C_{30}H_{42}O_5$) originating from a molecular ion resulting from loss of O₂ and characteristic of the presence of a peroxyl group in the parent compound. An AB doublet for the C(25) methylene group protons occurred in the low-field region (δ 2.73, 1H, d, J = 12.4 Hz; δ 2.15, 1H, d, J = 12.4 Hz) due to the effect of the peroxyl bridge. These data suggested that the peroxyl moiety was located between C(9) and C(10). The α -orientation of the H-5 signal (δ 2.93) did not cause any nOe of H-25 β whereas irradiation of the CH₃-C(23) signal (δ 1.41) did produce an nOe with H-25 β , indicating that the latter lay close to the axial β -oriented CH₃-C(23).

The constitution of rings C, D, E, and F, was derived from biogenetic considerations and comparison of the ¹H n.m.r. and mass spectral data for 2 with those of pseudolarolide-A $(3)^4$ and -D (4),⁴ as well as 1.

The complete structure and stereochemistry of 2 were established unequivocally by X-ray crystallographic analysis.⁵ A view of the solid-state conformation is provided in Figure 1. Bond lengths and angles are in accord with expectations.

Figure 1. Structure and solid-state conformation of pseudolarolide-H (2); small circles represent hydrogen atoms.

 α,β -Unsaturated ε -lactone ring A has a conformation characterized by three adjacent small torsion angles and, by analogy with the cyclopentane and cyclohexane halfchair counterparts it also may be described as a half-chair form in which the approximate C_2 -axis of symmetry passes through C(2) and the mid-point of the C(4)-C(5) bond. Endocyclic torsion angles for ring B are related by an approximate C_2 symmetry axis passing through C(5) and the mid-point of the C(8)-C(9) bond, and it has a twist-chair form. Six-membered rings C and E are both in flattened chair conformations. Five-membered rings D and F have envelope forms in which C(13) and C(21), respectively, are the out-of-plane atoms whereas ring G is in a half-chair conformation with its C_2 symmetry axis passing through C(10).

The co-occurrence of 2 and 4 in the same plant suggests that 2 might be derived biosynthetically from 4 through peroxidation accompanied by C(9)-C(10) bond cleavage.

Acknowledgement. This investigation was supported by grants from the Science Fund of the Chinese Academy of Science (Z.L.Li) and the U.S. National Cancer Institute (K.H.Lee).

References and Notes

- 1. Z. L. Li, K. Chen, D. J. Pan, and G. Y. Xu, Acta Chimica Sinica ,1989, 47, 258.
- 2. D. J. Pan, Z. L. Li, C. Q. Hu, K. Chen, J. J. Chang, and K. H. Lee, Planta Medica, in press.
- 3. G. F. Chen, Z. L. Li, K. Chen, C. M. Tang, X. He, D. J. Pan, C. Q. Hu, D. R. McPhail, A. T. McPhail, and K. H. Lee, J. Chem. Soc., Chem. Commun., submitted.
- 4. Data for compounds 3 and 4, which were also isolated from this same extract, will be presented in detail elsewhere.
- 5. Crystal data. $C_{30}H_{42}O_7$ (2), M = 514.67, orthorhombic, space group $P2_12_12_1$, a = 18.169(1), b = 19.489(1), c = 7.792(1) Å (from 25 orientation reflections, $42^{\circ} < \theta < 48^{\circ}$), V = 2759.1(6) Å³, Z = 4, $D_c = 1.239$ g cm⁻³, μ (Cu-K α radiation, $\lambda = 1.5418$ Å) = 6.7 cm⁻¹; crystal dimensions: 0.20 x 0.20 x 0.40 mm. Intensity data (+h,+k,+l; $\theta_{max} = 75^{\circ}$; 3215 reflections) were recorded on an Enraf-Nonius CAD-4 diffractometer (Cu-K α radiation, graphite monochromator, ω -2 θ scans). The crystal structure was solved by direct methods (MULTAN11/82). Full-matrix least-squares refinement of atomic parameters (anisotropic C, O; fixed H contributions) converged at R = 0.053 ($R_w = 0.075$) over 2558 reflections with $I > 3.0\sigma(I)$. Crystallographic calculations were performed on PDP11/44 and MicroVAX computers by use of the Enraf-Nonius Structure Determination Package (SDP). Atomic parameters, bond lengths and angles for 2 have been deposited at the Cambridge Crystallographic Data Center.

(Received in USA 29 March 1990)